Convoluted Moderator

D. V. Baxter Indiana University/CEEM

CEEM: Cutout View/Facilities

LENS

Proton Radiation Therapy (>1000 patients so far)

Low Energy Neutron Source (LENS)

- Based on **proton linac** and low-energy (p,nx) reactions (E_p<13MeV) in Be. 2 target stations:
- Unmoderated target for MeV neutron applications in science and engineering (Single Event Effects in electronics, defense, radiography).
- Flexible **target-moderator-reflector** system for moderator development (solid CH₄ at 4K)
- Variable pulse width (from $<5 \mu$ s to more than 1.0 ms).
- In "long-pulse" mode, LENS has time-averaged cold neutron intensity suitable for **neutron scattering** (SANS, neutron spin echo).

LENS Accelerator

~20 mA peak proton current, Variable frequency/pulse width

13MeV proton linear accelerator (RFQ/DTLs)

High-power Klystrons in operation

"Neutron physics on a human scale" (F. Mezei)

LENS Facility Layout

Designed/built/characterized by graduate students Local user program in operation

Target Moderator Reflector (TMR)

Target/Moderator Test Assembly

PT-410 pulse tube cryorefrigerator

Top view of target/moderator

extra" space for flexibility

4K LENS Cold Neutron Moderator

Research on Prototype Moderators

View of the reflector (inside a lead cask to shield gammas) and the cavity available for test moderators. The proton beam enters from bottom of left-hand image.

Fit to the Spectrum 13 MeV, CH4, 6K

PE/Si Convoluted Moderator

PE/Si Convoluted Moderator

D. V. Baxter (IU); E. B. Iverson, P Ferguson, F. Gallmeier (SNS); S. Ansell (ISIS), G. Muhrer (LANL)

~120K Spectra

Angular dependence (6.8 meV)

Angular dependence (10.8 eV)

MCNP Simulations of the "Geometric Effect"

F. Gallmeier (SNS)

Control moderator (Spacers)

Control moderator (Monolithic)

Facility Layout: 2009

Target Moderator Reflector (TMR)

Source Features

- •(p,n)Be source at 13 MeV
- •Minimal activation near the source
- •Variable proton parameters (freq, pulse width, etc.)
- •Ability to measure spectra and emission time distributions from test moderators.

Test bed Assembly

PT-410

Details of Cryogenic Vacuum Design

Research on prototype Moderators

View of the reflector (inside a lead cask to shield gammas) and the cavity available for test moderators. On right is shown the opening to the beam lines, into which we insert Cd-coated liners to reduce interference from the reflector. The proton beam enters from bottom of left-hand image.